Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction

نویسندگان

  • A. Mosallam
  • Kamal Medjaher
  • Noureddine Zerhouni
چکیده

Reliability of prognostics and health management systems (PHM) relies upon accurate understanding of critical components’ degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of data or expert models. Such models require extensive experimentation and verification that are not always feasible. Another approach that builds up knowledge about the system degradation over the time from component sensor data is known as data driven. Data driven models, however, require that sufficient historical data have been collected. In this paper, a two phases data driven method for RUL prediction is presented. In the offline phase, the proposed method builds on finding variables that contain information about the degradation behavior using unsupervised variable selection method. Different health indicators (HI) are constructed from the selected variables, which represent the degradation as a function of time, and saved in the offline database as reference models. In the online phase, the method finds the most similar offline health indicator, to the online health indicator, using k-nearest neighbors (k-NN) classifier to use it as a RUL predictor. The method finally estimates the degradation state using discrete Bayesian Ahmed Mosallam FEMTO-ST Institute, AS2M department, University of Franche-Comté/CNRS/ENSMM/UTBM, 24 rue Alain Savary, 25000 Besançon, France. E-mail: [email protected] Kamal Medjaher FEMTO-ST Institute, AS2M department, University of Franche-Comté/CNRS/ENSMM/UTBM, 24 rue Alain Savary, 25000 Besançon, France. E-mail: [email protected] Noureddine Zerhouni FEMTO-ST Institute, AS2M department, University of Franche-Comté/CNRS/ENSMM/UTBM, 24 rue Alain Savary, 25000 Besançon, France. E-mail: [email protected] 2 A. Mosallam et al. filter. The method is verified using battery and turbofan engine degradation simulation data acquired from NASA data repository. The results show the effectiveness of the method in predicting the RUL for both applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Similarity-based Prognostics Approach for Remaining Useful Life Prediction

Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimati...

متن کامل

i Uiopasdfghjklznmuiopasdfghjklzxcvbnmqwetyuiopasdghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcv bnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmrtyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiop Asdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwpasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopa sdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmrtyuiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwetyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmqwertyuiopasdjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcv bnmrtyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyuiopasdfjklzxcvbnm Acoustic emission-based diagnostics and prognostics of slow rotating bearings using Bayesian techniques

Diagnostics and prognostics in rotating machinery is a subject of much on-going research. There are three approaches to diagnostics and prognostics. These include experience-based approaches, data-driven techniques and model-based techniques. Bayesian data-driven techniques are gaining widespread application in diagnostics and prognostics of mechanical and allied systems including slow rotating...

متن کامل

Using Deep Learning Based Approaches for Bearing Remaining Useful Life Prediction

Traditional data driven prognostics requires establishing explicit model equations and much prior knowledge about signal processing techniques and prognostic expertise, and therefore is limited in the age of big data. This paper presents a deep learning based approach for bearing remaining useful life (RUL) prediction with big data. This approach has the ability to automatically extract importa...

متن کامل

Switching Kalman filter for failure prognostic

The use of condition monitoring (CM) data to predict remaining useful life have been growing with increasing use of health and usage monitoring systems on aircraft. There are many data-driven methodologies available for the prediction and popular ones include artificial intelligence and statistical based approach. The drawback of such approaches is that they require a lot of failure data for tr...

متن کامل

Applying the General Path Model to Estimation of Remaining Useful Life

The ultimate goal of most prognostic systems is accurate prediction of the remaining useful life of individual systems or components based on their use and performance. This class of prognostic algorithms is termed effects-based, or Type III, prognostics. A unitspecific prognostic model, called the General Path Model, involve identifying an appropriate degradation measure to characterize the sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Intelligent Manufacturing

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2016